金融危機時における
リレーションシップ・バンキングの実証分析

中 村 亨*
西 山 茂**
小 川 一 夫***
ワリエワ エリビラ****

1 序

本稿では、金融危機時にリレーションシップ・バンキングが中小企業への貸出し金利の設定にみられる銀行行動に、どのような影響を与えたかに関するミクロデータを用いた実証分析である。特に多くの研究者が試みたスペシフィケーションに加え、リレーションシップの度合いが強い企業とそうでない企業との間に、貸出し金利に有意な差が生じるかどうかを検証する。

我が国では、戦後の高度成長時代を形成する際に、銀行が果たした役割は大きく、特に「系列」金融と呼ばれるグループ企業の中でのメインバンクの役割

*神戸学院大学経済学部教授
**神戸学院大学経済学部准教授
***大阪大学社会経済研究所教授
****神戸学院大学大学院経済学研究科博士課程3年

（1）Petersen and Rajan [19] は、リレーションシップを「金融機関との密接な結びつきを持つ企業は、持たない企業に比して、資本コストは低くなり、信用の利用可能性も大きくなる」と場合の結びつきとしている。
金融危機時におけるリレーションシップ・バンキングの実証分析

に関する研究は Hoshi et al. [17] 等多くなされている。彼等は、ある企業が複数の債権者を持ち、それらの間に顕著な利害対立が存在する場合、金融ショック時にその企業は大きなコストを被ると述べている。さらに、この系列金融は金融ショック時における利害対立を緩和させることに重要な役割を果たしたと指摘する。さらに、実証分析の結果、メインバンクがある企業は、経済ショックが起こっても回復のベースが比較的速く、投資活動において流動性制約が非系列企業より厳しくないため、両方の間に投資活動や売上げパフォーマンスにおいて著しい差が出るとしている。また、系列企業間のトレードクレジットの相互提供により、一時的なショックを乗り越える可能性が十分にあると主張している。こうしたメインバンクの有無が市場にとっては企業のクレディビリティの度合いを示すシグナルとしての機能も果たすという。

最近では、本来、頻繁に信用制約に直面し、債券や株式を通じたファイナンスの手段を持たない中小企業のリレーションシップ・バンキングに焦点が移っている。その嚆矢となったのが Petersen and Rajan [19] である。彼等は、情報の非対称性やエージェンシーコスト等により、長期的に十分な競争力のある中小企業でも、融資が不確実であることを指摘し、不足した情報を自らが補正できる大手機関投資家との連携により、企業側はその問題を回避できうることを指摘する。銀行と企業との間に長期的な取引関係がある場合、企業が直面する資金や貸出金利に好ましい影響を与えるとしている。さらに、複数の銀行との関係を持つより、一定のメインバンクとの関係を持つ方が企業への信頼を高め、銀行サービスを受ける際のコストを軽減させる効果を持つとの結果も報告している。

（3）これに対して細野 [6] は複数行との取引には安定的な資金調達のための保険
リレーションシップ・バンキングにはメリットばかりではなく、デメリットも存在する。銀行の財務状況と企業行動を対象とする研究では、中小企業では大企業よりも銀行の健全性（自己資本比率の損失、不良債権比率の上昇等）の影響を受けやすいと報告している。そこでは、中小企業は情報開示が大企業ほど厳格に義務づけられておらず、借り手企業と貸し手との間に情報の非対称性が大きく、その結果債券市場での資金調達が困難であるため、銀行融資に偏ってしまうからである。中小企業は銀行との密接な関係を構築することで、情報の非対称性が軽減されてはじめて融資を受けることが可能となるが、他方、取引銀行がそのソフト情報を独占的に保有してしまうと、借り手に対し強い立場に立つこともできるようになる。換言すれば、企業が銀行融資への依存度を高めてしまうと、その行動も銀行の財務状況や行動に左右されてしまう可能性さえ否定できないと指摘している。その中で、渡部[8]は、実証分析により、リレーションシップ・レンダーが借り手企業の情報の一部を独占することで、自らの内部事情により融資条件を銀行側に有利なように制御する可能性が十分あることを示している。中小企業は融資を受ける銀行が限られており、銀行依存度が高いため、貸し手の収益改善策によってレントを追求されたり、借り入れ申し込みを拒絶もしくは借入れ額の減額等の不利を被る恐れがある。このような銀行の健全性の悪化による借り手企業への負の影響は「銀行効果」と呼ばれ、かつてバブル崩壊後に不良債権処理に追われた日本の銀行による「貸し渋り」行動は、まさに「銀行効果」の現れといえよう。渡部[8]では、「銀行効果」すなわち、メインバンクの不良債権比率と貸出金利との間に有意な正の関係があることが示され、銀行の健全性が中小企業の資金のアベイラビリティに大きな影響を及ぼしているとしている。さらに、こうした「銀行効果」の負の効果に対応できる有望な対策として、企業による情報ディスクロージャーの進展を提案している。情報ディスクロージャーにより、貸出先を複数行にある

機能があると指摘している。
金融危機時におけるリレーションシップ・バンキングの実証分析

れば、貸し手の間で競争が働き、銀行にレント収奪のインセンティブが抑制されるので、結果的に細野・澤田・渡部[7]の主張と同様に、企業はより安定的に資金調達できるとしている。こうした銀行の健全性の貸出金利への影響についての検証に対して、細野[6]は、メインバンクの財務の健全性と中小企業の設備投資の関連性を銀行の業態別（主要行、地域銀行、共同組織金融機関）にみることで、銀行の企業に対する情報独占の程度、代替的な資金調達の困難さ（スイッチング・コスト）の差異を分析している。信用組合や信用金庫をメインバンクとする企業は零細企業で占められ、その私的情報はメインバンクに独占される傾向があることから、その銀行の影響を受けやすくなると指摘している。小川[3]もメインバンクの健全性と顧客企業の設備投資、雇用に関する実証分析を行い、その健全性が損なわれると、情報ディスクロージャーが少なく、取引年数が短い企業ほど、貸出態度が厳しくなり、貸し渋りが起こり、その結果、企業側の雇用、流動・固定資産等の企業活動に負の影響を与えることを示している。

本稿の構成は以下の通りである。次節では実証分析のベースになる貸出金利決定方程式に関するモデル及び貸出金利決定要因の検証に用いられるデータの詳細、第3節では推定結果を示し、そのインプリケーションの説明を行う。第4節は本稿の結論である。

2 貸出金利モデル及びデータの詳細

貸出金利決定要因を推定する為の推定モデルの定式化は、Petersen and Rajan[19]にならい、以下の特定化を採用した。すなわち、

\[Lending \ rate_{i,t} = \beta_1 \text{Firm characteristics} + \beta_2 \text{Bank characteristics} + \beta_3 \text{Relationship characteristics} + d_t + \eta_i + v_{i,t} \] （1）

ここで、右辺の第1項目は、融資を受ける企業側の特性を表し、自己資本比率、

（4）これは、後で示す我々の実証結果と相違するところである。取引銀行数を増やすほど、金融危機時に金利引上げ効果が顕著となる。第3節、ケース4を参照。
流動性資本比率、総資産及び短期借入にそれぞれ対数をとったもの、第2項には、その企業とマッチングした銀行の特性、すなわち不良債権比率や総資産利益率、さらに第3項にはリレーションシップの特性を表す企業年齢を説明変数とした。特に、総資産が説明変数に入っているのは、Bernanke and Gertler[11]のいう「担保価値」の金利軽減効果があるかどうかをみるためにある。

後で述べるように、銀行を業態別に分類し、また取引先銀行数なども考慮して、リレーションシップ・バンキングのより詳細な行動を分析する。Petersen and Rajan[19]では、これらの変数以外にも売上高成長率、プライムレート、地域・産業ダミー、銀行の競争度を表すHerfindahl指数等を用いて回帰分析を行っている。

銀行サービスの効率性が最も問われるのが銀行の与信審査能力である。融資対象の企業がもつプロジェクトに対する評価から与信額及び貸出金利が設定される。その際の企業がもつ財務情報は金利決定の重要なファクターとなることは言うまでもない。一方、当の銀行が財務危機に陥った場合、企業に対する与信を控えようとするであろう。これが銀行の財務指標が説明変数に入っている理由である。

リレーションシップは、企業と銀行の取引関係が続く期間において形成される。企業が融資を受ける期間が長ければ長いほど、取引開始時に情報の非対称性がかなり存在したとしても、次第に解消されていくであろう。この過程で、借手の企業の価値を評価し、金利に付加されるリスクプレミアムは縮小される。このように、リレーションシップの特性をダイレクトに表すのは、企業と銀行との間で取引関係が継続された期間ということになるが、Petersen and Rajan[19]は、企業の信用に関する情報は、過去において他の金融機関との関係を

(5) 我々も売上高成長率を入れて回帰分析を行ったが、ほとんど有意な結果が得られなかったので、当稿では省略している。後の3つの変数を含めての推定は今後の課題とした。

(6) 小川[2]は、銀行の企業価値最大化から貸出供給関数を理論的に導出、及び推定を行っている。
金融危機時におけるリレーションシップ・バンキングの実証分析

通しても得ることは可能であることから、企業年齢でも十分にその代理変数となるとしている。本稿もそれに準じて説明変数に加えている。（7）

本稿で用いられた個別企業のパネルデータの多くは東京商工リサーチ（TSR）の企業データベース（主にバランスシート及び損益計算書）から得られたものである。個別企業の取引先銀行については、帝国データバンクの『帝国データバンク会社年鑑』各号より抽出された。取引先銀行の項目で最初に記載されている銀行をメインバンク、あるいはリレーションシップ・バンクと見なし。このメインバンクとして指定された銀行との関係は、サンプル期間の間変化しないと仮定している。分析対象とするのは、従業員300人以下の中小企業とし、後で述べる変数について、完全にデータが欠落した企業は除外し、その結果、分析の対象となるサンプル企業数は1625社で、サンプル期間は1998年から2008年の11年間である。一部データが欠損している変数もある unbalanced data である。実証分析に使用された変数の定義並びにそのデータ出所は表1に、その記述統計は表2にまとめられている。

リレーションシップを表す変数に関して、多くの研究ではメインバンクとの取引関係をもった年数を採用しているが、先行述べたように、データ制約の為、式見[4]と同様、企業年齢をその代理変数とした。

（7）Petersen and Rajan [19]は、リレーションシップの重要な側面は取引期間だけではなく、企業が取引先の銀行から様々な金融サービスを購入できる点もあげている。実際、Kano et al. [18]は銀行と企業との間の取引関係の範囲の広さをリレーションシップの指標として分析している。

（8）データベース作成の際、式見雅代准教授（長崎大学）よりご教示を頂いた。ここに感謝の意を表したい。

（9）中小企業とそのメインバンクとの関係については、中小企業庁による中小企業を対象に実施されたアンケート調査である「金融環境実態調査」により正確に把握できるが、データ入手の制約上利用できなかった為、Petersen and Rajan [19]のように、信用量の決定要因の分析まで踏み込むことはできなかった。

（10）式見[4]は、中小企業の銀行切替問題を詳細に扱っている。

（11）渡部[8]は、取引年数の標本平均は36年と報告している。
神戸学院経済学論集（第45巻第3号）

表 1. 変数の定義

<table>
<thead>
<tr>
<th>変数</th>
<th>定義</th>
<th>出所</th>
</tr>
</thead>
<tbody>
<tr>
<td>被説明変数</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interest</td>
<td>貸出金利（＝支払利息/(短期借入金＋一年内返済の長期借入金＋一年内償還の社債)）</td>
<td>TSR</td>
</tr>
<tr>
<td>説明変数</td>
<td></td>
<td></td>
</tr>
<tr>
<td>企業側変数</td>
<td></td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>創業年数</td>
<td>帝国データバンク</td>
</tr>
<tr>
<td>banknum</td>
<td>取引銀行数（推定時には100で除す）</td>
<td>帝国データバンク</td>
</tr>
<tr>
<td>capital</td>
<td>自己資本比率（＝自己資本/総資産）</td>
<td>TSR</td>
</tr>
<tr>
<td>crisis</td>
<td>金融危機ダミー（1998年～2001年＝1，2002年～2008年＝0）</td>
<td>comp</td>
</tr>
<tr>
<td>current</td>
<td>流動性資本比率（＝流動性資本/総資産）</td>
<td>TSR</td>
</tr>
<tr>
<td>lnasset</td>
<td>総資産の対数</td>
<td>TSR</td>
</tr>
<tr>
<td>lnshort</td>
<td>短期借入の対数</td>
<td>TSR</td>
</tr>
<tr>
<td>銀行側変数</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nplsp</td>
<td>不良債権比率（＝不良債権/貸出債権）</td>
<td>全国銀行協会</td>
</tr>
<tr>
<td>roa</td>
<td>総資産利益率（＝営業利益/総資産）</td>
<td>全国銀行協会</td>
</tr>
</tbody>
</table>

表 2. 記述統計

<table>
<thead>
<tr>
<th>変数</th>
<th>単位</th>
<th>平均</th>
<th>標準偏差</th>
<th>最小値</th>
<th>最大値</th>
</tr>
</thead>
<tbody>
<tr>
<td>interest</td>
<td>%</td>
<td>2.62</td>
<td>7.79</td>
<td>0.0001</td>
<td>6.59</td>
</tr>
<tr>
<td>age</td>
<td>年</td>
<td>46.31</td>
<td>14.51</td>
<td>2</td>
<td>101</td>
</tr>
<tr>
<td>banknum</td>
<td>行数</td>
<td>6.32</td>
<td>2.41</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>capital</td>
<td>%</td>
<td>22.8</td>
<td>15.2</td>
<td>-0.477</td>
<td>0.894</td>
</tr>
<tr>
<td>current</td>
<td>%</td>
<td>0.648</td>
<td>0.192</td>
<td>0.028</td>
<td>0.998</td>
</tr>
<tr>
<td>lnasset</td>
<td></td>
<td>15.67</td>
<td>1.09</td>
<td>8.00</td>
<td>18.41</td>
</tr>
<tr>
<td>lnshort</td>
<td></td>
<td>13.60</td>
<td>1.53</td>
<td>1.09</td>
<td>17.67</td>
</tr>
<tr>
<td>nplsp</td>
<td>%</td>
<td>9.32</td>
<td>9.31</td>
<td>0.086</td>
<td>100</td>
</tr>
<tr>
<td>roa</td>
<td>%</td>
<td>0.625</td>
<td>0.279</td>
<td>-4.32</td>
<td>6.17</td>
</tr>
</tbody>
</table>

3 標定結果

3.1 サンプル全体

貸出金利決定要因の推定結果は表 3 に示されている。推定方法は全部で3種類である。すなわち、(1) 全てのデータをプールして OLS 推定するプーリング推定，(2) パネルデータ固定効果推定，(3) パネルデータ変動効果推定であ
金融危機時におけるリレーションシップ・バンキングの実証分析

モデル選択の検定結果も下段に示されている。まずブーリング推定とランダム効果推定の比較をした Breusch and Pagan 検定では、ランダム効果推定が選択され、ランダム効果推定と固定効果推定の比較をした Hausman 検定では、固定効果推定が選択された。

最初に、他の多くの研究で試みられたように、貸出金利の決定要因には、融資を受ける企業側の要因と貸出する金融機関の要因について検討する。まず融資を受ける企業の財務指標として、自己資本比率（capital）、流動性資本比率（current）の効果をみてみよう。自己資本比率の係数は、どの推定で計測してもマイナスで、固定効果推定を除いて有意水準 1％で有意な結果を得ている。自己資本比率が充実すれば、財務力の安定性を評価され、貸出金利は低く抑えられることを示している。これは従来の研究結果と矛盾しない。一方、総資産及び短期借入の対数値（lnasset 及び lnshort）の係数は、想定された符号ではない。しかも、表 3 ～表 7 にみられるように、この 2 つの変数の推定値は、どのようなサンプル対象を変化させても、有意性は高くロバストである。lnasset の係数がプラスであるということは、先に述べた Bernanke and Gertler [11]が言う「担保価値」の貸出金利圧縮効果が見られないということである。また、短期借入が過大になれば、リスクプレミアムが増大し、金利は上げられるはずであるが、我々の推定結果はマイナスとなっており想定された方向と逆である。これらの結果は渡部 [8] と異なるところである。銀行の審査能力が一貫して甘く、非合理的な「追い貸し」のような継続融資が常態化し、メインバンクが効率的に機能していなかった可能性があると言わざるを得ない。

次に銀行側の財務指標が貸出金利にどのような影響を与えるかをみてみよう。そもそも、銀行の自己資本の検損が貸出の減少につながることを示した研究は多い。我々のモデルでは、銀行側の不良債権比率の上昇は、貸出金利の引上げ

(12) 例えば渡部 [8] を参照。
(13) 例えば、Diamond and Rajan [14] や Holmstrom and Tirole [16] 等は、銀行の自己資本の検損は、貸出供給の減少をもたらすことを理論的に示している。
表3．貸出金利決定要因のパネル推定（全サンプル）

<table>
<thead>
<tr>
<th>被説明変数</th>
<th>プーリング推定</th>
<th>固定効果推定</th>
<th>変動効果推定</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>係数</td>
<td>t値</td>
<td>係数</td>
</tr>
<tr>
<td>企業属性変数</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>capital</td>
<td>-0.020***</td>
<td>-7.24</td>
<td>-0.000</td>
</tr>
<tr>
<td>current</td>
<td>0.006***</td>
<td>3.12</td>
<td>-0.004</td>
</tr>
<tr>
<td>lnasset</td>
<td>0.007***</td>
<td>13.49</td>
<td>0.010***</td>
</tr>
<tr>
<td>lnshort</td>
<td>-0.007***</td>
<td>-20.00</td>
<td>-0.011***</td>
</tr>
<tr>
<td>銀行属性変数</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nplsi</td>
<td>0.000**</td>
<td>2.25</td>
<td>0.000</td>
</tr>
<tr>
<td>roai</td>
<td>-0.002</td>
<td>-1.61</td>
<td>-0.003**</td>
</tr>
<tr>
<td>リレーションシップ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>-0.001</td>
<td>-0.38</td>
<td>-0.040*</td>
</tr>
<tr>
<td>age*crisis</td>
<td>0.006***</td>
<td>3.64</td>
<td>0.006**</td>
</tr>
<tr>
<td>観察値</td>
<td>16582</td>
<td></td>
<td>16582</td>
</tr>
<tr>
<td>企業数</td>
<td>1625</td>
<td></td>
<td>1625</td>
</tr>
<tr>
<td>adj R^2（全体）</td>
<td>0.026</td>
<td></td>
<td>0.019</td>
</tr>
</tbody>
</table>

Breusch–Pagan Lagrangian Test (pooling vs. random) Chi2(1) = 790.63

Hausman Test (random vs. fixed) Chi2(8) = 55.03

注）(***), (**)，(*) 印はそれぞれ，有意水準1％， 5％，10％を表す。

表4．貸出金利決定要因のパネル推定（ケース1）

<table>
<thead>
<tr>
<th>被説明変数</th>
<th>プーリング推定</th>
<th>固定効果推定</th>
<th>変動効果推定</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>係数</td>
<td>t値</td>
<td>係数</td>
</tr>
<tr>
<td>企業属性変数</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>capital</td>
<td>-0.022***</td>
<td>-10.29</td>
<td>0.009*</td>
</tr>
<tr>
<td>current</td>
<td>0.001</td>
<td>0.81</td>
<td>0.003</td>
</tr>
<tr>
<td>lnasset</td>
<td>0.002***</td>
<td>5.78</td>
<td>0.005***</td>
</tr>
<tr>
<td>lnshort</td>
<td>-0.004***</td>
<td>-16.89</td>
<td>-0.006***</td>
</tr>
<tr>
<td>銀行属性変数</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nplsi</td>
<td>0.000</td>
<td>1.40</td>
<td>0.000</td>
</tr>
<tr>
<td>roai</td>
<td>-0.001</td>
<td>-0.85</td>
<td>-0.002</td>
</tr>
<tr>
<td>リレーションシップ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>0.000</td>
<td>0.01</td>
<td>-0.008</td>
</tr>
<tr>
<td>age*crisis</td>
<td>0.006***</td>
<td>3.64</td>
<td>0.008***</td>
</tr>
<tr>
<td>観察値</td>
<td>3348</td>
<td></td>
<td>3348</td>
</tr>
<tr>
<td>企業数</td>
<td>333</td>
<td></td>
<td>333</td>
</tr>
<tr>
<td>adj R^2（全体）</td>
<td>0.108</td>
<td></td>
<td>0.006</td>
</tr>
</tbody>
</table>

注）(***), (**)，(*) 印はそれぞれ，有意水準1％， 5％，10％を表す。
金融危機時におけるリレーションシップ・バンキングの実証分析

表 5. 貸出金利決定要因のパネル推定（ケース 2）

<table>
<thead>
<tr>
<th>被説明変数</th>
<th>ブーリング推定</th>
<th>固定効果推定</th>
<th>変動効果推定</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>係数</td>
<td>t 値</td>
<td>係数</td>
</tr>
<tr>
<td>企業属性変数</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>capital</td>
<td>0.011</td>
<td>0.10</td>
<td>-0.006</td>
</tr>
<tr>
<td>current</td>
<td>0.020**</td>
<td>2.27</td>
<td>-0.021</td>
</tr>
<tr>
<td>lnasset</td>
<td>0.012***</td>
<td>5.41</td>
<td>0.023***</td>
</tr>
<tr>
<td>lnshort</td>
<td>-0.010***</td>
<td>-7.52</td>
<td>-0.003***</td>
</tr>
<tr>
<td>銀行属性変数</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>npls</td>
<td>0.000</td>
<td>0.44</td>
<td>0.000</td>
</tr>
<tr>
<td>roa</td>
<td>-0.006</td>
<td>-1.00</td>
<td>-0.007</td>
</tr>
<tr>
<td>リレーションシップ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>0.017</td>
<td>1.401</td>
<td>-0.010</td>
</tr>
<tr>
<td>age*crisis</td>
<td>0.008</td>
<td>1.04</td>
<td>0.001</td>
</tr>
<tr>
<td>観察値</td>
<td>3212</td>
<td></td>
<td>3212</td>
</tr>
<tr>
<td>企業数</td>
<td>319</td>
<td></td>
<td>319</td>
</tr>
<tr>
<td>adj R^2（全体）</td>
<td>0.017</td>
<td>0.015</td>
<td></td>
</tr>
</tbody>
</table>

注）（***），（**），(*) 印はそれぞれ，有意水準 1%，5%，10%を表す。

表 6. 貸出金利決定要因のパネル推定（ケース 3）

<table>
<thead>
<tr>
<th>被説明変数</th>
<th>ブーリング推定</th>
<th>固定効果推定</th>
<th>変動効果推定</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>係数</td>
<td>t 値</td>
<td>係数</td>
</tr>
<tr>
<td>企業属性変数</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>capital</td>
<td>-0.035***</td>
<td>-10.29</td>
<td>-0.009</td>
</tr>
<tr>
<td>current</td>
<td>0.009***</td>
<td>3.43</td>
<td>0.003</td>
</tr>
<tr>
<td>lnasset</td>
<td>0.009***</td>
<td>12.93</td>
<td>0.008***</td>
</tr>
<tr>
<td>lnshort</td>
<td>-0.009***</td>
<td>-17.27</td>
<td>-0.008***</td>
</tr>
<tr>
<td>銀行属性変数</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>npls</td>
<td>0.000***</td>
<td>2.85</td>
<td>0.000</td>
</tr>
<tr>
<td>roa</td>
<td>-0.002</td>
<td>-0.92</td>
<td>-0.003</td>
</tr>
<tr>
<td>リレーションシップ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>-0.006*</td>
<td>1.77</td>
<td>-0.035</td>
</tr>
<tr>
<td>age*crisis</td>
<td>0.005**</td>
<td>3.64</td>
<td>0.003</td>
</tr>
<tr>
<td>観察値</td>
<td>6409</td>
<td></td>
<td>6409</td>
</tr>
<tr>
<td>企業数</td>
<td>616</td>
<td></td>
<td>616</td>
</tr>
<tr>
<td>adj R^2（全体）</td>
<td>0.05</td>
<td>0.038</td>
<td></td>
</tr>
</tbody>
</table>

注）（***），（**），(*) 印はそれぞれ，有意水準 1%，5%，10%を表す。
表7. 貸出金利決定要因のパネル推定（ケース4）

<table>
<thead>
<tr>
<th>被説明変数</th>
<th>ブーリング推定</th>
<th>固定効果推定</th>
<th>変動効果推定</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>係数</td>
<td>t値</td>
<td>係数</td>
</tr>
<tr>
<td>企業属性変数</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>capital</td>
<td>-0.018***</td>
<td>-13.01</td>
<td>-0.005</td>
</tr>
<tr>
<td>current</td>
<td>-0.001*</td>
<td>-1.64</td>
<td>-0.009***</td>
</tr>
<tr>
<td>lnasset</td>
<td>0.004***</td>
<td>14.67</td>
<td>0.004***</td>
</tr>
<tr>
<td>lnshort</td>
<td>-0.004***</td>
<td>-19.44</td>
<td>-0.0105***</td>
</tr>
<tr>
<td>銀行属性変数</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>npls</td>
<td>0.000</td>
<td>1.25</td>
<td>-0.000</td>
</tr>
<tr>
<td>roa</td>
<td>-0.000</td>
<td>-0.71</td>
<td>-0.001**</td>
</tr>
<tr>
<td>リレーションシップ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>-0.009***</td>
<td>-6.99</td>
<td>-0.040***</td>
</tr>
<tr>
<td>age*crisis</td>
<td>0.007***</td>
<td>9.16</td>
<td>0.005***</td>
</tr>
<tr>
<td>観察値</td>
<td>3613</td>
<td>3613</td>
<td>3613</td>
</tr>
<tr>
<td>企業数</td>
<td>357</td>
<td>357</td>
<td>357</td>
</tr>
<tr>
<td>adj R^2（全体）</td>
<td>0.162</td>
<td>0.098</td>
<td>0.148</td>
</tr>
</tbody>
</table>

注）（***），（**），（*）印はそれぞれ、有意水準1％、5％、10％を表す。

つながることで、係数はプラスになることが期待される。実際には、符号条件は3種の推定方法すべてにおいて満たされるが、有意であったのはブーリング推定のみであった（変動効果推定でのp値は0.13である。渡部[8]では、有意水準5％で有意である）。一方、総資産収益率（roa）に関しては、その増加は銀行の財務状況の好転を意味し、符号はマイナス、すなわち貸出金利の引下げが期待される。我々の推定結果では、符号条件は全てのケースで満たされ、ブーリング推定を除いて有意であった（ブーリング推定でのp値は0.108）。

最後に、銀行及びその銀行と取引関係をもつ企業との間にリレーションシップがあり、本来、情報の非対称性が生じる典型的な環境の中でも、「ソフト情報」を蓄積し続け、その非対称性の程度を軽減するといわれるのでリレーションシップ・ランキングのworkingについて考察したい。とりわけ、このリレーションシップについて考察したい。

(14) 実証分析で、このことを示したものとして、Hubbard et al. [15] があげられる。
金融危機時におけるリレーションシップ・バンキングの実証分析

シップ・バンキングの貸出金利決定に与える影響についての実証分析は様々な結果を出していない。企業にとって資金のアベイラビリティや貸出金利に関し、好ましい影響を与えるとした研究は多く存在する（Petersen and Rajan [19], Berger and Udell [9], Boot [12], Boot and Thakor [13]）。これに対して, Hubbard et al. [15] は、リレーションシップが長いほど、貸出金利を引き上げる傾向があることを報告している。我々の実証分析では、リレーションシップを表す代理変数として、企業年齢（age）を採用している。企業年齢の係数は固定効果推定を除いて有意ではないものの全てマイナスである。これは、銀行側、企業側の財務変数で制御した上で、概ねリレーションシップが長いほど、貸出金利を引き下げる傾向があることを示しており、Petersen and Rajan [19] や他の研究と同様である。興味深いのは、年齢と金融危機ダミー（1998年〜2001年=1, 2002年〜2008年=0）の積（age*crisis）の係数である。この係数がプラスで有意な場合、金融危機時においては、むしろリレーションシップ故に金利を引き上げる傾向があることを意味する。表 3 の結果から明らかのように、どの推定方法においても、その係数はプラスで有意であることが観察される。これらは、金融危機時において、効率的なリレーションシップ・バンキングの行動を示しているのであろうか。あるいはリレーションシップ故に、銀行が排他的な関係を利用し、企業に不利を被らせる「ホールドアップ」問題の状況であることを意味するのであろうか。これをみるために、メインバンクの特性、取引銀行数を考慮した推定を行い、金融危機時の銀行行動の詳細を次節で明らかにしたい。

3.2 メインバンクの特性及び取引銀行数を考慮した推定

当節では、3.1 節で試みた推定を各企業のメインバンクの特性及び取引銀行数を考慮して適用する。具体的には、2 節で述べたように、帝京デーテバンクの『帝京データバンク会社年鑑』に記載されている取引銀行のトップにあげられている銀行をメインバンクとし、その銀行が主要行（都市銀行、長期信用銀
行及び信託銀行）か地域銀行（地方銀行、第二地方銀行、信用金庫及び信用組合）のどちらに属しているかを識別する。このように2種のどちらかに識別された銀行をメインバンクとする中小企業にサンプルを分割した。さらに、各企業が取り引きしている銀行数の規模別（具体的には6行未満と6行以上の2種）にサンプルを分割した。このため、1）メインバンクが主要行、かつ取引銀行数が6行未満、2）メインバンクが地域銀行、かつ取引銀行数が6行未満、3）メインバンクが主要行、かつ取引銀行数が6行以上、4）メインバンクが地域銀行、かつ取引銀行数が6行以上、の計4種類のサブサンプルに分割し推定を行った。その結果は表4～表7に示されている。ここで、まず主要行と地域銀行に分割した理由は以下の通りである。かつて、主要行が融資の対象とするのは大企業が中心であったが、金融の自由化により、大企業のファイナンスの多様化、特に債券発行による資金調達、外債市場を通じた資金調達も増大し、銀行借入の重要度は低下していったことはよく知られている。その影響により主要行といえども、中小企業への融資を含めた業務多角化を計らねばならず、我々のサンプル期間にどのような銀行行動を展開していったかをみるとることは興味深い。一方、地域に根ざした融資を業態とする地域銀行はリレーションシップ・バンキングの主体行となると予想されるが、果たしてそのようなパフォーマンスを見せていたかどうかは問われなければならない。

次に、取引銀行数であるが、これは貸出市場の競争度を表す変数とみてよいであろう。Petersen and Rajan [20] は、貸出市場の競争度が高いほど大まかに高まるほど、銀行と企業の間のリレーションシップは薄くなり、競争度が弱まるほど、濃密になると述べている。一方、式見 [4] が述べるように、企業にとって取引関係をもつ銀行の数が多く、銀行間の競争が激しいほど、メインバンクを変更する確率が高くなり、金利引き下げインセンティブ効果も働く。逆に取引銀行数が少なく、銀行との関係が排他的な関係がある場合には、その関係がロッ
金融危機時におけるリレーションシップ・バンキングの実証分析

クインされ、メインバンクの変更が困難になり、金利引上げ等によるレントの独占を銀行に許してしまうという。また、大村・水上[1]は、我が国の中企業金融においては、複数銀行間での融資競争が激化している環境を指摘している。このように、我々は取引銀行数が銀行と中小企業との関係を制約する要因として注目した。上に述べた4つのサンプルに対して、前節と同じスペシフィケーションで推定を行った。推定結果から伺えることは以下の点にまとめられる。

ケース1：メインバンクが主要行、かつ取引銀行数が6行未満

表4を見る限り、リレーションシップを表す企業年齢の係数は、どの推定方法においても有意な結果は得られず、リレーションシップ・バンキングの金利軽減効果は見られなかった。ところが、企業年齢と金融危機ダミーの積の係数は、どの推定方法においてもプラスで、しかも1％水準で有意であった。主要行は取引銀行数の少ない中小企業に対して、リレーションシップ・バンキング故の金利軽減措置を取ることなく、金融危機によって引き起こされた、財務的に厳しい環境になると、金利引上げによるレント確保に走るという構図が伺われる。

ケース2：メインバンクが地域銀行、かつ取引銀行数が6行未満

表5から明らかなように、企業年齢の係数及び企業年齢と金融危機ダミーの積の係数ともに、統計的に有意ではない。これは、リレーションシップ・バンキング故の金利軽減措置を取ることなく、金融危機時に、メインバンクが財務的に不利になっても、金利引上げを通じてレント確保に走ることもなかったと解釈できる。これは、我々にとって意外な結果である。取引銀行数が少ない超零細企業と、しかもメインバンクが小規模の地域銀行であるこの組み合わせが、リレーションシップ・バンキングが形成されやすい組み合わせであるにもかかわらず、金利軽減効果もなく、金融危機時のホールドアップ問題の状況も
生じていないからである。まず、金利軽減効果が働かなかったことについては、
超零細企業と取引する地域銀行側に与信審査能力の欠如、非効率的な金融サー
ビス、情報の非対称性を緩和する「情報生産機能」を持ち合わせておらず、メ
インバンクが効率的に機能していなかった可能性がある。金利引上げを通じて
レント確保に走ることがなかったのは、銀行貸出市場の競争が低い場合、リレーシ
ョンシップ故に期間ごとの貸出金利の回収を延期し、長い取引期間の間に独
占レントを回収すればよいというビジネスモデルである可能性を示唆する。こ
れはリレーションシップ・バンキングの評価される側面であると言える。ある
いは単に、大村・水上 [1] が主張するように、相対取引に内在する、非合理
的で問題先送り型の継続融資であった可能性もある。前者はリレーションシッ
プの合理的な計算の上で行われているが、後者はリレーションシップの非合理
的な側面といえる。

ケース 3：メインバンクが主要行、かつ取引銀行数が 6 行以上

表 2 から、取引銀行数の平均は約 6.3 行で、最大値が 10 行である。この平均
以上の取引銀行数を持ち、かつメインバンクが主要行である場合、リレーション
ションシップ・バンキングの金利軽減効果が見られたのは、プーリング推定のケー
スのみであった（p 値 = 0.077）。しかし想定された符号条件は 3 ケースとも満
たされている。一方、金融危機時の金利引上げは、プーリング推定、変動効果
推定の 2 ケースで有意であった（それぞれの p 値は、0.033, 0.021）。

ケース 4：メインバンクが地域銀行、かつ取引銀行数が 6 行以上

このケースにおいて、2 変数の係数はどの推定方法によっても、すべて有意
水準 1 %で有意であり、しかも想定された符号条件を満たしている。すなわち、
リレーションシップ・バンキング故の金利軽減効果が現れており、金融危機時

(16)『帝国データバンク会社年鑑』は企業が取引する銀行を最大10行までしかリス
トアップしていない。
金融危機時におけるリレーションシップ・バンキングの実証分析

のレント確保の金利引上げも見られる。この効果がケース2よりも顕著であるのはなぜであろうか。本来、取引銀行数が多くなると、銀行間の競争が働き、企業自身のメインバンク切替え起こってしまう可能性を恐れ、価格（金利）競争が起こるか、あるいは、メインバンクが企業に特有の「ソフト情報」を占有化するものの、メインバンクとの取引が評価され、企業の信用という形で情報の非対称性が軽減し、モニタリングコストの削減につながり、貸出金利の軽減効果につながっていると考えられる。ただし、この解釈は、本論の冒頭で紹介した、Petersen and Rajan[19]の見解、すなわち、複数の銀行との関係を持つより、一定のメインバンクとの関係を持つ方が金利軽減効果があるとした見解と矛盾する。では、金融危機時の金利引上げ効果はどうであろうか。ケース2で指摘したように、合理的なリレーションシップの場合は、即座の金利引上げや金利回収は避け、長期的なスパンでレントを回収をするというsmoothing化をはかるところである。あるいは、銀行間の競争が激しい場合、金利引上げのインセンティブは抑制されるはずである。しかし、1997年のアジア通貨危機、さらには北海道拓殖銀行・山一証券の破綻という金融危機において、一律に多くの銀行の財務の基盤を損なうため、多くの取引銀行はフリーライダー的構造にレント獲得に群衆行動化したと解釈できる。しかし、貸出金利の引上げていても、表7から明らかのように、当初の金利軽減効果をキャンセルアウトする以上のものではなかったことを指摘しておこう。つまり、リレーションシップにより情報の非対称性を緩和することで実現した金利軽減効果を打ち消すほどの金利引上げではない。これは、合理的なリレーションシップの結果とも考えられる。

4 結論

日本の多くの金融機関は、取引銀行数の少ない、いわば寡占的な貸出市場における中小企業に対して、長年の取引経験を通じて、企業特有の「ソフト情報」を得て、効率的なリレーションシップ・バンキングをしてきたのであろうか。200
国内金融危機を含む1998年～2008年のサンプル期間で試みた我々の実証結果から、その問いに対する答えは、留保付きで、ストレートではないのがイエスである。全サンプル企業を対象とした推計では、企業年齢で表したリレーションシップの係数は、有意性は小さいがマイナスの結果を得ており（固定効果推定）、リレーションシップ故の金利軽減効果が見られる。一方で、金融危機時には、リレーションシップ故に銀行が排他的な関係を利用し、金利を上げており、レントを回収しているようである。これをさらに銀行の特性、企業の取引銀行数を考慮したサブサンプルのもとで推定し直すと、意外にも、リレーションシップを最も発揮すべきケースで、リレーションシップ故の金利軽減効果はみられなかった。金融危機時の金利引上げについては、主要行は一貫して引上げを行っているが、地方銀行の場合、リレーションシップが発揮されやすい、銀行間の競争が少ないケースでは、金利の引上げは行われていない。銀行間の競争が増大すると、金融危機時に金利を引上げる傾向があるが、その引上げ幅は当初の金利軽減効果を上回るほどのものではない。銀行間で競争的になればなるほど、金利軽減効果が高まるということは、効率的なリレーションシップ・バンキングを行っていた為とも言えるし、あるいは他銀行の評価、貸出状況を勘案しながら自社の融資方針を決め、メインバンク銀行との取引状況そのものが企業の評価につながり、モニタリングコスト下げてきたというフリーラーダー的銀行行動が理由であったと考えられる。地域銀行のリレーションシップ・バンキングは、2003年3月18日に金融庁が発表した「リレーションシップバンキングの機能強化に関するアクションプログラム」に示されているように、企業との間の密接なリレーションシップを生かした中小企業への目利きとしての役割を担い、地域経済発展の要としての役割を担うはずのものだったが、主要行に比べて圧倒的に劣る審査能力しか有せず、多くの取引銀行はフリーライダー的に情報を共有し、レント獲得に群衆行動化した可能性がある。効率的なリレーションシップ・バンキングが機能したのか、あるいは、非効率な継続融資が中心のリレーションシップ・バンキングが多勢を占めたのかはさらなる検討が必要である。
金融危機時におけるリレーションシップ・バンキングの実証分析

要である。

参考文献

北村行伸編『応用ミクロ計量経済学』, pp. 197-226, 日本評論社.
『三田商学研究』, 第50巻, 第5号.
[17] Hoshi, Takeo, Anil Kashap and David Scharfstein, 1990, “The role of banks in

